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Thermo-viscous fingering of flow in a thin gap: 
a model of magma flow in dikes and fissures 

By KARL R. HELFRICH 
Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA 

(Received 24 January 1995 and in revised form 2 August 1995) 

Flow of a fluid with a strongly temperature-dependent viscosity in a finite-length 
slot is analysed as a model of magma flow in dikes. The slot walls are held at 
a fixed temperature, thus cooling and increasing the viscosity of the fluid as it 
moves along the gap. Poiseuille flow and temperature advection, averaged across 
the slot, are used to study the stability of this basic one-dimensional flow to lateral 
perturbations. A linear stability analysis shows that for sufficiently strong cooling 
and viscosity increase with decreasing temperature, the flow is unstable to a fingering 
instability. Warm fluid is focused into relatively fast flowing zones and suffers only 
modest cooling, while cold, slow flowing regions experience more cooling and an 
increase in viscosity, which acts to locally clog the slot. The necessary condition for 
instability is the presence of multiple solutions for velocity (fast, intermediate and 
slow branches) in the basic one-dimensional flow. The intermediate branch, where the 
thermal adjustment lengthscale is comparable to the slot length, is unstable and the 
analysis indicates that the instability continues onto the slow branch. The parametric 
regions of instability and the growth rates are dependent on the choice of boundary 
conditions at the slot entrance (i.e. the magma source): either uniform flux, or uniform 
pressure. The latter case is the more geophysically realistic and has the larger unstable 
region and growth rates. Numerical solutions of the nonlinear equations show that 
at finite-amplitude the hot, low-viscosity, fast-flowing fingers continue to speed up, 
while the slow, cold regions continue to cool and slow down. At the slot exit fluid 
issues from the gap in isolated hot, low-viscosity spouts separated by zones of cold, 
nearly still fluid. Application of the model to geophysical settings indicates that the 
instability is expected for realistic parameter values. The model may help explain the 
observed focusing of fissure eruptions. 

1. Introduction 
There are many geophysical situations in which a viscous fluid is cooled as it flows. 

If the viscosity of the fluid increases as the temperature decreases, the resistance to the 
flow will increase. The extreme case is when the material freezes and completely stops 
flowing. However, if the flux must be maintained due to a continuous source, then 
this type of thermo-viscous rheology can lead to complex behaviour. For example, 
in the spreading of viscous gravity currents surface cooling can lead to a variety 
of morphological structures including pillow lava features, rifts and folds (Fink & 
Griffiths 1990) and sharp, shock-like, fronts (Bercovici 1994). Another example is 
the observed focusing of flow in magmatic fissure eruptions (Richter et al. 1970; 
Delany & Pollard 1982). These eruptions often begin as a uniform flux from a long 
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linear fissure. Over time the flow becomes focused into isolated spouts separated by 
segments of the fissure which have closed. 

The dynamics of this flow focusing and the related issue of freezing and melt- 
back of dike walls have been the subject of a several of previous studies. Fuji & 
Uyeda (1974) showed that in a one-dimensional problem (cross-gap variations only) 
the combination of temperature-dependent viscosity and frictional heating results in 
a thermal instability leading to infinite flux when a critical condition is exceeded. 
However, their analysis did not allow for variability in the lateral direction, or for 
changes in the direction of the flow, and so could not produce a condition for the 
development of spatial fingering. Bruce & Huppert (1989, 1990) and Turcotte (1990) 
improved upon this type of analysis by developing models of the thermodynamics of 
freezing and melt-back of the gap walls in a slot of finite length. For a given rheology 
and physical setting (driving pressure gradient, surrounding wall rock temperature, 
initial temperature at the source, slot length, etc.) these models predict that a slot 
narrower than a critical width will freeze shut and the flow will decrease. For larger 
initial gaps the walls will melt back and allow an increased flux. Bruce & Huppert 
(1989, 1990) used their model to suggest that the lateral focusing of fissure eruptions 
arises from the initial variability in the fissure width (in the lateral direction) with 
some areas giving rise to freezing and others melt-back. 

Whitehead & Helfrich (1991, hereafter referred to as WH) investigated a different 
model in which fluid rheology and thermodynamics combine internally to produce 
temporal and spatial structure. Cooling of the fluid as it flows through a finite-length 
cylindrical tube results in increased viscosity and therefore resistance to the flow. This 
causes an increase in the driving pressure gradient (the fluid source is a continuously 
fed elastic chamber) which eventually becomes large enough to rapidly force the cold 
fluid out of the tube. The driving pressure then decreases and consequently so does 
the flux. The fluid in the tube then cools and the pattern repeats. The result is a limit 
cycle: periods of rapid hot flow and periods of slow cold flow. A requirement for the 
instability and limit cycle was the occurrence of multiple solutions to the steady-state 
relation between pressure drop along the tube length and the mass flux (discussed in 
more detail below). Laboratory experiments supported the model results. 

WH’s extension of the model to two dimensions (a cooled planar slot), but with 
all the lateral flow occurring in the underlying elastic chamber, gave rise to a spatial 
fingering instability. Hot, low-viscosity, fast-flowing fluid zones alternated with cold, 
high-viscosity, slow-flowing zones. This two-dimensional fingering is related to the 
familiar Saffman-Taylor instability, but where the flow internally determines the 
viscosity structure. Again the necessary condition for instability is multiple solutions 
for the basic-state pressure-flow relation. Their linear model predicted that the growth 
rate was the same for almost all wavenumbers. No specific wavenumber was expected 
to dominate based upon a largest linear growth rate. Some preliminary laboratory 
experiments showed that low wavenumbers were preferred, and thus it appears that 
the model is inadequate. Further, the WH model retained inertia terms in the 
momentum equations and quasi-steady heat advection. For the viscously dominated, 
high Prandtl number flows under consideration time-dependence in the heat equation 
is important, while inertia in the momentum equation is not. 

In this paper a theory of the type discussed by WH is presented in which lateral 
flow in the slot is allowed, but in which the details of the fluid source region (i.e. 
the magma chamber) are ignored other than as a specification of the slot inflow 
boundary condition. The structure across the thin gap is treated as in the Hele-Shaw 
approximation by averaging the viscosity, velocity and temperature across the gap. 
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Time-dependence is retained only in the temperature equation and heat loss to the 
surrounding solid walls is modelled using a linear heat transfer law. The present 
model is less realistic that the model of Bruce & Huppert (1989, 1991) in that no 
account is taken of the cross-gap structure of the flow, viscosity and temperature. 
But the present model does add the lateral dimension to the problem. Freezing and 
melt-back of the gap walls are not considered, rather the focus here is on a fluid with 
strongly temperature-dependent viscosity. 

In $2 the governing equations and boundary conditions are given. The basic-state 
flow is discussed in 43. It is shown that for a large enough cold to hot viscosity ratio 
there exist multiple solutions for the basic-state fluid velocity: slow, intermediate and 
fast branches. In $4 the linear stability of this basic state is studied. It is shown 
that for either of the two choices of source boundary conditions, fixed uniform flux 
or uniform pressure, the flow may be subject to a fingering instability in which hot 
fluid is focused into fast-flowing channels separated by cold, slow-flowing viscous 
regions. The constant-pressure case generally has the higher growth rates and larger 
parametric region of instability. Both cases predict a maximum growth rate and a 
short-wave cutoff of the instability, while only the uniform flux case always has a 
long-wave cutoff. 

In 95 the nonlinear equations are solved numerically to study the finite amplitude 
evolution of the instability. The calculations show that at finite amplitude the flow 
focusing continues, leading to faster flow in the hot channels and zones of slowing 
and cooling flow. This pattern is apparently stable and is not subject to secondary 
instabilities. For general initial conditions low wavenumbers are preferred at finite 
amplitude. In $6 the results are summarized and application of the model to the 
motivating geophysical problem is discussed. 

2. Themodel 
The physical situation is shown in figure 1. Hot fluid with temperature TH and 

viscosity p H  is forced into a thin slot of width d << L, where L is the length of the 
slot in the z-direction. The slot is taken to be infinite in the lateral dimension x. 
The flow is assumed to be laminar and dominated by friction and pressure and the 
Prandtl number to be large. Under these assumptions the velocity u = (u,w),  where 
u is the velocity in the x-direction and w is the z-direction velocity, and temperature 
T, averaged across the gap are governed by 

v - u  = 0, 

and 
dT  
- + W V T  = K V ~ T  -J / (T - T ~ ) .  
at  

Here p is the departure of the pressure from hot hydrostatic (dp/dz = -pHg),  p( T )  
is the fluid viscosity and V = (d/ax, d l d z ) .  Here t is time, g is the gravitational 
acceleration, k is the unit vector in the z-direction, p~ is the density at the entrance 
temperature TH. The momentum equation (1) includes the effect of fluid buoyancy 
using a linear equation of state with the thermal expansion coefficient a'. 

The thermal diffusivity of the fluid IC is assumed constant. Heat loss to the 
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FIGURE 1. Definition sketch. 

surrounding solid walls is approximated by the last term in (3), where the heat 
transfer coefficient 

This assumes that the temperature field is dominated by the first sine mode in the 
cross-gap direction. The temperature of the surrounding solid rock is Tw. More 
rigorous treatments of the thermodynamics are certainly possible (for example see 
Bruce & Huppert 1989, 1990), but for this study Tw is taken as a constant. Heating 
of the wall rock is ignored and so the analysis should be considered valid only for 
times less than a thermal diffusion time d2/icw, where KW is the diffusivity of the wall 
rock. For typical values of d = 1 m and icW = lop6 m2 s-l, this corresponds to t < 10 
days. For comparable and longer times the heat loss to the surrounding wall rock 
effectively insulates the magma and 6’ should decrease as t-’/2. 

The viscosity is taken to be a strongly increasing function for decreasing temperature 
as is appropriate for magma in the neighbourhood of the solidus temperature. For 
simplicity the formula 

where y’ is a constant, is used. This relation was used by Fujii & Uyeda (1974). 
However, it is only an approximation for real magmas which can have complex 
rheologies in the temperature range near their solidus temperature (Shaw 1969; Ryan 
& Blevins 1987). 

The use of the Hele-Shaw (i.e. averaged) model for this temperature-dependent 
viscosity problem is also a significant approximation. First it assumes that the flow is 
laminar. This is reasonable for basaltic magma flow in narrow fractures (d  < 1-2 m) 
where the driving pressure is provided principally by the buoyancy difference between 
the magma and the surrounding rock (Turcotte 1990). The important role of viscosity 
in these flows has also been demonstrated in analysis of fluid mechanical models of 
crack propagation (Lister & Kerr 1991; Lister 1994a,b). A Reynolds number based 
on the gap width is typically < O( 10). This combined with the assumptions of narrow 
gap, d / L  << 1, and high Prandtl number, p / p x  >> 1, leads to the balance between 

p = pHef(TH-T) 7 ( 5 )  
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friction and pressure represented by (1) and the retention of time-dependence in the 
temperature equation (3). 

More significantly, cooling at the walls will give rise to a cross-gap viscosity profile 
and subsequent modification of the velocity profile from the parabolic shape of the 
constant-viscosity Poiseuille problem. The temperature field will also be affected. This 
will in turn modify the integrated mass and heat fluxes through the gap (Ockendon 
& Ockendon 1977). Bercovici (1994) has shown that even after accounting for this 
cross-gap viscosity and velocity structure, the average velocity can still be modelled 
by the momentum equation (1) with viscosity function replaced by a modified form. 
In general, this effect can be shown to require a lower value of y’ in the averaged 
model than the actual y’ of the fluid. This is because in the non-averaged problem 
cooling and viscosity increase at the channel walls where the velocity is lowest. This 
reduces the effective channel width, and therefore increases the average resistance to 
the flow (expressed as 12p/d2 in (1)) while also promoting cooling of the core of the 
flow. The combination of wall cooling and channel constriction can be parameterized 
as an increase in the average viscosity, but with a weaker dependence on temperature 
than the viscosity of the actual fluid, hence a smaller y’. 

The cross-gap structure is certainly an important aspect of the complete problem, 
but to illustrate the basic thermo-viscous instability and assess the relevance of the 
phenomenon for the geophysical situation, an averaged model is used. Certainly 
the good qualitative agreement between experiments and theory obtain by WH in 
the one-dimensional problem suggests that an averaged model captures the essential 
physics. 

During the preparation of this paper the author became aware of recent work 
by Wylie & Lister (1995) who have studied the same problem without averaging 
in the cross-gap direction. Their work shows that the averaged model does lead 
to qualitatively correct results, though quantitative differences will be present. This 
is addressed in $6. One feature of this study not fully considered in theirs is the 
nonlinear development of the flow. 

The governing equations (1)-(3) and the viscosity ( 5 )  are normalized with the 
following scales: 

b , Z )  -+ L, 

t -+ L / U ,  

P d 2  
(u,w) -+ u = ~ 

12LPH’ 

p -+ pH* 

The velocity scale U follows from the Poiseuille relation for fluid with viscosity pH 
and a driving pressure gradient of P / L .  

The streamfunction y ,  where 

( 4 w )  = (-%, wx), (6 )  

is defined. Eliminating p from (1) and using (6) gives the vorticity equation 

2 dlnp a a0 v y * v o + -  -. v y = - -  
d0 P ax 

(7) 
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The temperature equation ( 3 )  and the viscosity ( 5 )  become, respectively, 

and 

a0 
- at + J (y ,  6 )  = -66 

The Jacobian J(u,  b )  = u,b, - a&,. The scaled temperature 0 is 

T-Tw o =  
TH - Tnr ' 

The non-dimensional coefficients 6, 71 and a are 

6'L 127l2ICpH L2 gPHa' (TH - TW)L 

P 
a = -  = , y = y ' ( T H - T W ) ,  a =  

U Pd4 
The ratio of cold to hot viscosities is ey. 

In (8) heat diffusion has been neglected, except for the component from the fluid 
to the wall (i.e. 6). This is justified since the Pkclet number U L / K  = 0(109) for the 
typical values li = 1 m s-l, L = lo3 m and IC = lop6 m2 s-'. The temperature field is 
dominated by advection and heat loss through the walls. 

The dynamic boundary condition at the slot exit is 

u = -wZ = 0 at z = 1. (12) 

This follows from (1)  and the assumption that pressure is uniform at the exit. 
Temperature is simply advected out of the slot. In specifying these outlet conditions 
it is assumed that once fluid leaves the gap it does not re-enter the gap or affect the 
following fluid parcels. Effectively, fluid is removed immediately from the slot exit 
region. At the entrance to the slot (z = 0) fluid temperature is TH and so 

0 = 1  a tz=O.  (13) 

The dynamic condition at z = 0 can take either of two forms. In the first case (here- 
after called Case I) flow into the slot is uniform in x and constant in time, but the pres- 
sure is not constant along the slot entrance. In the second case (Case 11) the pressure at 
z = 0 is constant (i.e. dp/dx = 0). This second condition allows the flow into the slot to 
vary with x, but the total integrated flux into the slot is maintained constant (the same 
as in Case I). Coupling of the slot flow to an underlying elastic source chamber is left 
for a later study, but from the work of WH this could be expected to give rise to inter- 
esting time-dependent behaviour. Further specification of the conditions is deferred 
until the $4 (equations (20) and (21)), after the basic-state flow has been introduced. 

3. Basic flow 

constant z-velocity wo is 
Ignoring variations and flow in the lateral direction a steady basic state with 

= w0x , 0 = ~ - J z / w o  A = eY(1-B) (14u-c) 

Here Y ,  0 and A? are the basic-state streamfunction, temperature and viscosity, 
respectively. From (1) and (14) the pressure difference between z = 0 and 1, Ap, is 

Note that Ap has the opposite sign from the pressure gradient. 
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FIGURE 2. Basic one-dimensional flow velocity wo as a function of 6 for several values of the 
viscosity parameter y .  The solid curves are for CI = 0. Multiple solutions for wo occur over a finite 
range of 6 for y > yc = 3.03 when CI = 0. The dashed curve is for y = 3 and CI = 0.5. 

In (15) the pressure difference Ap is normalized to 1 using the driving pressure 
scale P .  This then gives a relationship between the basic-state velocity wo, or flux per 
unit length wod, and the external parameters 6, y and a. The relation (15) could have 
been scaled so that wo = 1, in which case (15) gives a relation between A p  and the 
external parameters. However, in what follows we choose the first alternative since it 
is consistent with the geological setting of the problem where the driving pressure is 
the more likely independent parameter. 

The behaviour of the basic flow can be explored by examining the limits of fast 
and slow flow. When the flow is slow, or 6 is very large, such that 6 / w o  >> 1, from 
(14b, c )  0 - 0 and A - e?, and from (15) wg - (1 - a)eO. Fluid entering the channel 
is immediately cooled to the wall temperature and consequently the viscosity is very 
large and the flow is very slow. In the fast, or small-6, limit S / W O  << 1, 0 - 1, Af - 1 
and wo - 1. In this case the thermal adjustment scale w0/6 is much greater than 
the slot length. The fluid experiences no cooling as it moves through the slot. The 
solutions in the intermediate regime S/wo = 0(1), where the thermal adjustment scale 
is comparable to the slot length, is more complicated and is shown in the figure 2 
where wo is plotted as a function of 6 for several values of y with CI = 0. For small y 
the relation is single valued; however, as y is increased the relation bifurcates to give 
three solutions for wo over a range of 6 for a fixed y. For a = 0 multiple solutions 
occur for all y greater than the critical value yc = 3.03, or a cold to hot viscosity 
ratio of 20.7. Within the range of 6 where three solutions exist, two of the solution 
branches correspond to the fast and slow solutions discussed above, and the third is 
an intermediate velocity solution. For 6 outside this range only one solution exists. 

Figure 3 shows the region of 6, y parameter space where multiple solutions exist 
for a = 0. As y increases the range of 6 for multiple solutions increases, but the trend 
is towards smaller 6. Larger viscosity contrasts require lower heat transfer coefficients 
to give multiple solutions. 

Consideration of buoyancy effects with a d O(1) does not change the qualitative 
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behaviour, but does result in multiple solutions for lower y when a > 0. This is 
illustrated in figure 2 by the dashed line which is for y = 3 and a = 0.5. Multiple 
solutions now occur for 0.203 < 6 < 0.239. If a < 0 (i.e. downhill flow) the onset of 
multiple solutions is delayed until larger y. 

4. Linear stability 
When 6, y and a are such that multiple solutions exist and Ap, from (15), is plotted 

as a function of wo, the fast and slow solution branches are seen to have dAp/dwo > 0. 
On the intermediate solution branch dAp/dwo 0. An example is shown in figure 4 
for y = 5, 6 = 0.1 and a = 0. The three solutions which occur with the scaling Ap = 1 
are indicated by the circles. WH showed that a necessary condition for instability in 
either their one- or two-dimensional model was that dAp/dwo < 0 over some range 
of W O .  It is very likely that the intermediate solution here is unstable. However, 
the situation here is complicated by the inclusion of lateral flow in the slot and the 
other model improvements. Thus linear stability of the basic state (14) to lateral 
perturbations is investigated. 

Defining the perturbations 4 and 8’ from the basic state Y and 0 :  

= Y +4(X,Z,t); 8 = 0 + ~ y ~ , ~ , t )  (16) 

the vorticity (7) and temperature (8) equations become, respectively, 

and 

with p given by (9). The boundary condition on 8’ at z = 0 is (from (13)) 
a: + wo 8: + fjIx 0, + J ( $ ,  8’) = -ad’, ( 17b) 

8’ = 0 at z = 0. (18) 

= O  at z = 1. (19) 

At z = 1 the uniform pressure condition (12) gives 

The boundary condition of uniform vertical velocity wo at z = 0 (Case I) gives 
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(from (14) and (16)) 

and Case 11, uniform pressure in x, gives (from (l), (14) and (16)) 

The linear stability analysis assumes solutions of the form 

4 - f(z)sinkx e"' . 
(8/ ) - (h(z)coskx ) 

From (17a,bj and the boundary conditions (18), (19) and (20), or (21), the eigenvalue 
problem for the growth rate (T and structure functions g(zj and h(z)  is 

- - y  - - - k 2 f + k  
d2f dO df 
dz2 dz dz 

dh dO 
dz dz 

w o - + ( ( o + 6 ) h + k  - f = O  

with 
df (1) h(0) = 0, - = 0 

dz 
and 

f(0) = 0 (Case I) or - df(o) = o (Case 11) . (234 dz 
Here k is the wavenumber in the x-direction. The phase dependence of (22) arises 
from the assumption that (i, g and h are real. Oscillatory solutions may exist, but 
because of the dissipative nature of the flow and the steady forcing these would be 
rapidly damped or advected from the domain. This assumption is supported by the 
nonlinear calculations discussed in the next section. The eigenvalue problem (23), 
with 0 and 4 from (14b, c), is solved numerically using the Runge-Kutta method 
with shooting. 

In figure 5 contours of growth rate (T are shown in the ( k ,  wo)-plane for a =  0 and 
y = 5. This is well into the supercritical y-regime but, as shown below, the behaviour 
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FIGUR~ 5. Contours of growth rate CT in the ( k ,  woj-plane for y = 5 and dc - 0. (a)  Case I, uniform 
source flux boundary condition (20). (bj Case 11, uniform source pressure boundary condition (21). 
The CT contour interval is 0.025. Dotted lines bound the multiple solution regime. 

here is typical of all y .  The results are shown using wo rather than 6, since wo implies 
a unique value of 6, but not vice versa. Also indicated on the figures by the dashed 
lines are the values of wo which bound the multiple solution regime. Values of wo 
between the lines are solutions which lie on the intermediate branch of (15), those 
above and below are on the fast and slow branches, respectively. Only positive values 
of o indicating instability are plotted. Figure 5(a) shows the results using the Case 1, 
uniform source flux, boundary condition. The results from Case 11, uniform source 
pressure, are given in figure 5(b).  

Case I is unstable only for wo < 0.136 which is well below the maximum of the 
range of intermediate solutions wo = [0.015,0.345] (for 6 = [0.0565,0.149]). The 
instability has both long- and short-wave cutoffs. When wo is small, numerical 
solution of the eigenvalue problem becomes difficult, but the results indicate that 
the slow solution branch (below the lower dashed line) may also be unstable. This 
behaviour is shown more clearly in figure 5(b) and discussed below. The maximum 
growth rate occurs for k = 2.9 and wo m 0.07. As wo decreases the most unstable 
wavenumber increases. The wavelength of the most unstable wave scales with the 
thermal adjustment length w0/6. 

In contrast, Case I1 (figure 5b)  shows greater overall growth rates, no long-wave 
cutoff for solutions on the intermediate branch and a larger parametric region of 
instability. The instability is present for all WO corresponding to the intermediate 
solution as k -+ 0. The fast branch, wo > 0.345, is entirely stable. The calculations also 
show that just onto the slow branch of solutions (WO < 0.015) the instability persists 
with the unstable range in k moving to higher wavenumbers as WO decreases. Here the 
wavelength of the most unstable wave scales with w0/6. However, further exploration 
of the instability in this range proved difficult with the present numerical techniques. 

Increasing or decreasing y does not change the qualitative behaviour of the insta- 
bility. Figure 6 shows the growth rates for both boundary condition choices for y = 6 
and c( = 0. The results are quite similar to those in figure 5(a,b). Values of y up to 9 
have been investigated and there are no qualitative changes. 

Figure 7 shows the results for Case I1 (uniform pressure) for y = 3.25 and a = 0. 
This is just above the critical value, yc  = 3.03, for multiple solutions. At these 
parameter values Case I is entirely stable. The figure shows that the instability 
persists for all intermediate wo solutions as k + 0. The figure illustrates the tendency 
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FIGURE 6. Same as figure 5, except y = 6. (a) Case I. (b)  Case 11. 
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k 
FIGURE 7. Growth rates for uniform source pressure, Case 11, boundary conditions for y = 3.25 and 
a = 0. This example lies just into the multiple solution regime. At this value of y the flow with 
uniform source flux boundary condition is entirely stable. 

for high wavenumbers to stabilize as y decreases and for the slow solution branch 
to stabilize. 

With the constant-pressure boundary condition the instability is found for all y > yc.  
In the uniform source flux case, the flow is unstable for only for y > 4.27 (when 
a = 0). 

The effect of varying the buoyancy parameter a has not been studied thoroughly, 
but when a d O( 1) computations show that it is destabilizing (stabilizing) for a > 0 
(< 0). This is also consistent with the effect of a on the basic-state flow solutions 
and is expected since for a > 0 the fluid experiences a buoyancy force which acts 
to enhance the flow in the hot zones and retard the cold zones, thus reinforcing the 
basic instability. For a < 0 the effect is opposite. 

Typical unstable linear eigenfunctions, and their effect on the total flow, are 
illustrated in figures 8 and 9. Both figures are for an example with 6 = 0.075, 
y = 6, a = 0, and k = 7c for the unstable intermediate solution wo = 0.0829. In 
figure 8 the uniform-flux (Case I) boundary condition (20) is used and in figure 9 
the uniform-pressure (Case 11) boundary condition (21) is used. In both figures the 
amplitude of the maximum temperature perturbation is set to 0.1 for the plots of 
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FIGURE 8. The unstable linear eigenfunctions for Case I and y = 6, CI = 0, S = 0.075 (wg = 0.0829) 
and k = n. In (a) and ( b )  the pertubation streamfunction 4 and temperature 0' are shown, 
respectively. The amplitude of 0' is set to 1. In (c) and ( d )  the total streamfunction tp and 
temperature 0 ficlds are shown for a maximum temperature perturbation amplitude of 0.1. The 
v-field is contoured in intervals of 0.05 and 0 in intervals of 0.1. 

the total fields (y,0) (frames c and d).  The perturbation fields (4,0') are shown in 
frames (a) and (b) .  The total temperature fields in the two cases are similar, with hot 
fluid localized into the fast-flowing zones which are separated by slow, cold viscous 
regions. The ly-field (frame c) in Case I1 shows much less lateral flow. This feature 
helps to explain the stabilization at small k found for Case I (cf. figure 5a). With 
uniform flux at z = 0 all lateral flow must take place within the slot where the fluid 
is subject to cooling. As the wavelength of the instability increases some fluid parcels 
must follow a lengthening path from source to exit and therefore experience more 
cooling and an increasing viscosity. 

5. Nonlinear evolution 
The finite-amplitude evolution of the instability was explored by numerical inte- 

gration of equations (17a,b) with the boundary conditions (18), (19) and (20), or (21). 
The temperature equation (17b) was integrated using second-order finite-differences 
in both space and time. The domain was taken to be periodic in the x-direction. 
The streamfunction 4 was updated each time step by solving (17a) with 0' at the 
updated time. Equation (174 was solved using a iterative under-relaxation method. 
The solution technique decomposed 4 using a Fourier series in x and either finite 
differences in z for Case I, or a Fourier cosine series in z for Case 11. A typical 
calculation had a resolution of 256 points in x and 40 points in z.  

The initial conditions used were either the linear eigenmode solution (22) for runs 
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FIGURE 9. The same as figure 8, except with uniform source pressure, Case 11, boundary conditions. 

with disturbances of one wavenumber or, for initial disturbances composed of a 
spectrum of wavenumbers, 4 = 0 and 

N 

0' = (1 - cos 2nz)  C a, sin ( k , ~  + p n )  . 
n=l 

Here a,, Pn and k ,  = n2n/LX are the amplitude, phase and wavenumber of mode n, 
respectively. L, is the length of the domain in the x-direction. 

A run with the initial condition consisting of one wavenumber is shown in figure 10. 
This example is for the uniform source flux boundary condition (Case I) with wg = 
0.0425, 6 = 0.075, y = 5 and c1 = 0. The disturbance wavenumber k = 3 and 
0 = 0.0344. A maximum initial 8' amplitude of 0.015 is used. Figure 10(a) shows the 
total streamfunction y and figure 10(b) shows the total temperature 8. Time increases 
from top to bottom. The flow quickly focuses into hot zones of rapid flow (t  = 80) 
which continue to narrow and increase in temperature and velocity ( t  = 160 and 240). 
At the last time there is evidence of the first harmonic ( k  = 6 )  present with the solution. 
Continued integration results in little change until t w 560 when the entire solution 
breaks down, apparently due to numerical problems. This is discussed below. 

A run with the same parameters, but for the constant pressure source boundary 
condition (Case 11) is shown in figure 11. The results are similar to those above, with 
focusing into hot, fast zones separated by broader, slow viscous zones by t = 80. In 
this case the growth rate c = 0.076 and so the evolution is more rapid than for Case 
I. There is almost no lateral flow within the slot in this case and the width of the hot 
outflow zones at z = 1 is greater than for Case I. The solution remains essentially 
unchanged until t = 200 when the subharmonic k = 1 begins to appear, probably 
introduced as noise in the initial condition. Integration much beyond this time is 
not possible due to numerical problems. If the domain length is made to equal one 



K.  R. Hewrich 232 

1 .o 1 .O 

z 0.5 z 0.5 240 

0 2 4 6 0 2 4 6 
X X 

FIGURE 10. Nonlinear evolution for the uniform source flux, Case I, boundary condition with 
y = 5, CI = 0, wo = 0.0425 (6 = 0.075). The initial condition is the linear eigenmode for k = 3 
(a = 0.0344) with a maximum temperature perturbation amplitude of 0.015. Column (a) shows the 
total streamfunction y (contour interval of 0.0089) and ( b )  shows the total temperature 0 (contour 
interval of 0.1). 

disturbance wavelength L, = 2n/k ,  the subharmonic is eliminated, but the numerical 
difficulties remain. 

The evolution to a nearly steady finite-amplitude state is illustrated in figure 12, 
where the vertical velocity at two locations on the z = 1 boundary is shown as a 
function of time. One location is the centre of the hot zone at x = n (solid line) and 
the other is in the cold zone at x = 0 (dashed line). The figure shows the results for 
the runs in figures 10 and 11. The Case I example (figure 10) is differentiated by the 
addition of circles. In both cases the flow reaches a nearly steady state after the initial 
growth period. This suggests that the finite-amplitude states are stable. 

The inability to carry the integrations much further in time appears to stem from 
an inability to resolve the increasingly steep gradients. Convergence in the iterative 
solution for 4 in (17a) cannot be achieved. Increasing the model resolution delays the 
onset of problems, suggesting a numerical origin of the difficulties. However, it may 
be that the strong viscosity and velocity gradients at the boundaries between the cold 
and hot zones are susceptible to a real instability of the type that occurs in viscosity 
stratified Couette flow (Craik 1969). 

The numerical problems are reduced and the solutions approach true steady states 
as y is reduced to just above the threshold for instability. As y is increased the 
finite-amplitude solutions become increasingly more difficult to follow for long times. 
Again though, this is consistent with either a numerical resolution problem or a 
physical instability due to shear and viscosity gradients, Resolution of this issue is 
left for a later study. 
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FIGURE 11. As figure 10 but for the uniform source pressure, Case 11, boundary condition 
and (T = 0.0763. 
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FIGURE 12. The vertical velocity at z = 1 at the centre of a hot zone (x = n)  and a cold zone 
(x = 0) as a function of time for the runs in figures 10 and 11. The hot velocity is indicated by the 
solid line and the cold velocity by the dashed line. The results from figure 10, Case I, are marked 
by the circles. 

Figure 12 shows that the finite-amplitude solutions evolve so that the vertical 
velocity in each zone (hot and cold) moves toward, but does not reach, the fast and 
slow branches of the basic-state flow solution. For the parameters of the runs in figures 
10-12 the slow and fast solutions are wo = 0.00921 and 0.787, respectively. There is, 
however, no requirement that the flow achieve this state. The added lateral dimension 
is certainly important, and in Case I the pressure at z = 0 is not constant in x for t > 0. 
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FIGURE 13. As figure 11 but with wo = 0.2178 (6 = 0.14 and (T = 0.0670). 

In these two runs the intermediate flow solution was relatively close to the slow 
branch solution. Or, recalling figure 2, the value of 6 was close to the minimum for 
multiple solutions at the given y .  If 6 is increased the solution remains qualitatively 
unchanged, but the width of the hot zones increases at the expense of the cold zones. 
This is illustrated in figure 13 where the evolution for the uniform source pressure 
boundary condition is shown for wo = 0.2178 (6 = 0.140). The parameter settings 
y = 5 and a = 0 are unchanged from figure 11, to which this figure should be 
compared. This behaviour can be understood from continuity considerations. If over 
a wavelength the flow is assumed to adjust to a region of length 1 with velocity wf, 
the fast solution to the basic state, and a region of length 1 - 1 with velocity w,, the 
slow solution, then continuity gives wo = (1 - l)ws + lwf, or 1 = (wg - wJ/(wf - w,). 
Thus 1 increases (decreases) as wg approaches wf (wJ. 

These and other calculations demonstrate that for an initial disturbance of just 
one wavenumber the instability grows rapidly in place to a nearly steady final state. 
Changing the values of y and a does not qualitatively affect the evolution. 

Runs with an initial condition of a spectrum of wavenumbers are dominated at 
finite amplitude by low wavenumbers. This is illustrated for a Case I1 run with y = 5, 
a = 0, 6 = 0.085 and wg = 0.0575. The initial condition contained wavenumbers 
k = 0.125 to 7.5 in increments 0.125. All wavenumbers had equal amplitude and 
random phases. The linear stability analysis for the situation (see figure 5b) gives a 
fastest growing wavenumber at k = 2.8, though the growth-rate curve is nearly flat for 
k 5 4. Shown in figure 14 are the w- and &fields at several times. At t = 40 several 
hot fingers are present, the strongest at x = 22. By t = 50 this finger dominates 
and carries most of the mass flux. Except for a weaker finger at x = 29, the rest of 
the fluid has slowed and is cooling, though there is still significant structure in the 
temperature field. 
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FIGURE 14. As figure 13 but the initial condition is a spectrum (k  = 0.125 to 7.5 in increments of 
0.125). Each wavenumber had the same 0' amplitude of 0.001 with random phase. 

In figure 15 the Fourier amplitudes calculated from 4 and 8' at z = 1 are shown 
for the same times as in figure 14. From the earliest time the &field is dominated 
by wavenumbers k < 0.5. In contrast, the spectrum of the temperature field is much 
more uniform. With time, cooling in the slow zones can be expected to reduce the 
energetic content of the higher wavenumbers. 

Solutions with other realizations of the initial conditions, parameter values or 
boundary condition (Case I) exhibit the same behaviour. Dominance of low wavenum- 
bers is a robust result of the nonlinear calculations. 

6.  Discussion 
The work of WH on the instabilities of flows with temperature-dependent viscosity 

has been extended to permit lateral flow within the slot. This study also improves on 
their work by neglecting the inertial terms in the momentum equations and retaining 
time-dependence in the temperature advection equation. Both of these features are 
appropriate for the viscously dominated flows in question. The basic one-dimensional 
flow is subject to an instability in which relatively warm, low-viscosity, fluid is focused 
into fast-flowing channels separated by relatively slow, cold, and highly viscous zones. 
The temperature-dependence of the viscosity causes a feedback which enables the hot 
zones to flow even faster while the cold zones continue to slow, cool and increase in 
viscosity. The result is a thermo-viscous fingering instability. The necessary condition 
for instability is the presence of multiple (three) solutions for the basic-state vertical 
velocity. 'For the exponential viscosity-dependence studied here, multiple solutions 
occur for cold to hot viscosity ratios greater than 20.7. 

The nonlinear calculations show that at finite amplitude the instability grows 
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FIGURE 15. Amplitudes of the Fourier modes from the run in figure 14. (a) Fourier amplitudes of 
q5 at z = 1. ( b )  Fourier amplitudes of 8' at z = 1. The times are indicated. 

in place. The large-amplitude fingering state reaches a quasi-steady state that is 
apparently stable. For initial conditions consisting of numerous wavenumbers in the 
unstable band the calculations show that low wavenumbers are preferred at finite 
amplitude. The flow evolves to just a few widely spaced hot fingers, in qualitative 
agreement with the experiment of WH. Though more experimental work is necessary 
for a complete comparison and test of the model. This suggests that if the gap is 
of finite, rather than periodic, lateral extent the flow will evolve towards a final state 
with perhaps just one hot finger. 

The relevance of these results to the stability of magma flow in dikes and fissure 
eruptions depends on the estimation of the parameters y and 6. In dimensional 
variables these parameters are (see (1 1)) 

1 2n2 K p H  L2 
P d4 

6 =  

and 

Y = ?' (TH - T W )  . 
The wall temperature TW is identified with the solidus temperature Ts of the magma. 
This is justified on thermodynamic grounds. Surrounding wall rock temperatures are 
likely to be even less than Ts. 

The first condition for instability is that y > 3.03 so that multiple solutions for 
the basic flow exist. This is easily met for basaltic magmas in the neighbourhood 
of their solidus temperature. From Shaw (1969) cold to hot viscosity ratios of 
O(l@-103) are typical for TH - TW X lOO"C, giving y 2 5. This is well into the 
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multiple solution regime and the linear instability is possible if Case 11, uniform 
source pressure, boundary conditions are used. This is the more realistic choice in 
the geological setting where we imagine that the slot is fed by a large magma source. 
While there must exist pressure variations within the chamber to facilitate lateral flow 
in the chamber, these are likely to be much less than the pressure drop from the slot 
entrance to the exit, due to the presumed larger size of the feeding chamber. So as a 
first approximation the source pressure can be considered uniform. 

The second condition for instability is that the value of the heat transfer parameter 
6 lie in the region for multiple solutions for the basic state, or be larger so the 
solution lies on the slow branch. For y = 5,  figure 2(b) shows that 6 = 0.056-0.15 for 
multiple solutions. For typical values (Bruce & Huppert 1990, 1991) of slot length 
L = lo3 m, P / L  = 2 x lo3 Pa m-', IC = lop6 m2 s-' and p H  = 10' Pas, 6 = 0.1 
for d = 0.5 m. While this estimate is within the unstable regime, it is meant only to 
illustrate that the instability is possible for reasonable geophysical parameters. The 
estimate for 6 is very sensitive to the choice of d.  Moreover, some of the other 
parameter estimates are not well constrained and may vary widely. A rough estimate 
for a, the buoyancy parameter, gives a NN 0.1, which is not large, but does enhance 
the instability. 

It is important to re-emphasize that the model assumes cross-slot averages for 
all variables. This can lead to important quantitative differences when compared to 
models which do not average across the slot (Bercovici 1994; Wylie & Lister 1995). 
Recall from $2 that a consequence of cross-gap averaging was that y in the averaged 
model is less than the y of the real fluid. This suggests that the critical value of yc for 
the real fluid is larger than 3.03. Indeed, Wylie & Lister find a critical value of cold 
to hot viscosity ratio of O( lo2), or yc GZ 5. This value is still such that the instability 
is possible for reasonable geophysical parameters. Even given these concerns, the 
present model improves on the earlier analysis of WH and helps to explain their 
experimental observations of thermo-viscous fingering. 

While many details of the real geophysical problem, such as the role of the cross- 
gap dimension, a more precise consideration of the heat transfer to the surrounding 
wall rock and its insulating effect, the possibility of melting and freezing, and the 
coupled dynamics of the underlying magma chamber, have not been considered 
here, the present model illustrates the role of temperature-dependent viscosity on 
the focusing of magma flow in dikes and fissure eruptions. It offers a mechanism 
by which the flow internally focuses into narrow hot spouts, rather than focusing 
that depends on the initial gap structure as proposed by Bruce & Huppert (1989, 
1990) in their model of the melt-back and freezing of dike walls. However, it should 
be noted that the mechanism of Bruce & Huppert can be qualitatively related to 
the present model. If instead of allowing the fluid viscosity to change, the gap 
thickness d is was permitted to change due to local melt-back or freezing, then 
much the same dynamics would probably occur. This can be seen by examining 
the momentum equations (1). A decrease (increase) in d is equivalent to an in- 
crease (decrease) in viscosity so far as it affects the flow resistance. This analogy 
between gap thickness and viscosity was also discussed by Stasiuk, Jaupart & Sparks 
(1993). The same feedback mechanism responsible for the thermo-viscous fingering 
would then result if faster flow produced melting (d increasing) and slower flow 
freezing (decreasing d), which does occur in the models of Fujii & Uyeda (1974), 
Turcotte (1990) and Bruce & Huppert (1989, 1990). It remains to be determined 
if multiple solutions for the basic flow exist. If yes, then an instability would 
be likely. 
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